Remarks on definitions of periodic points for nonautonomous dynamical system

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Bounded Solutions for Some Nonautonomous Ode

A Borsuk–Ulam type argument is used in order to prove existence of nontrivial bounded solutions to some nonautonomous linear differential equations.

متن کامل

Coherent sets for nonautonomous dynamical systems

We describe a mathematical formalism and numerical algorithms for identifying and tracking slowly mixing objects in nonautonomous dynamical systems. In the autonomous setting, such objects are variously known as almost-invariant sets, metastable sets, persistent patterns, or strange eigenmodes, and have proved to be important in a variety of applications. In this current work, we explain how to...

متن کامل

Remarks on Finding Critical Points

In the course of writing a chapter of a book we observed some simple facts dealing with the Palais SmaIe property and critical points of functions. Some of these facts turned out to be known, though not well-known, and we think it worthwhile to make them more available. In addition, we present some other recent results which we believe will prove to be useful-in particular, a result of Ghoussou...

متن کامل

State Space Decomposition for Nonautonomous Dynamical Systems

Decomposition of state spaces into dynamically different components is helpful for the understanding of dynamical behaviors of complex systems. A Conley type decomposition theorem is proved for nonautonomous dynamical systems defined on a non-compact but separable state space. Namely, the state space can be decomposed into a chain recurrent part and a gradient-like part. This result applies to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2019

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2019.1641496